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“. . . it is ingrained in mathematical science
that every real advance goes hand in hand

with the invention of sharper tools and simpler
methods which at the same time assist in

understanding earlier theories and cast aside
older more complicated developments.”

David Hilbert, Mathematical Problems, 1900

Abstract. This paper focuses on the role of critical nonlinearities within
the framework of global solvability of nonlinear PDE’s. In particular, we
present some new approach to blow-up issues for nonlinear problems.

1. Introduction

Critical nonlinearities are essentially divided into three classes:

(I) Fujita type critical nonlinearities;
(II) Bernstein type critical nonlinearities;

(III) Sobolev type critical nonlinearities.

and all of them are related to the Hamlet problem:

“to be or not to be global solutions of nonlinear PDEs”.

In this paper we mainly consider Fujita type critical nonlinearities,
whereas for Bernstein type critical nonlinearities we refer the interested
reader to [20] – [23], where the general functional approach is developed for
finding Bernstein type critical exponents in Sobolev spaces. About Sobolev
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type critical nonlinearities we refer to [18], [19], and [8], where the method of
variational identities is exploited to obtain Sobolev type critical exponents.

The main purpose of this paper is to present in a highlights fash-
ion some new approach in determining Fujita type critical exponents in
different nonlinear PDE’s; for this purpose, in what follows we adopt an
examples-layered presentation.

In order to show the main differences between local and global proper-
ties of solutions to nonlinear PDE’s, let us begin with two model examples.

Example 1.1. Consider a parabolic equation{
ut = ∆u + up in R

+ × R
N (p > 1),

u|t=0 = u0(x) ≥ 0, u0(x) �≡ 0.
(1.1)

Local analysis of this problem shows that for each p > 1 and initial function
u0 there exists a T = T (u0) such that at least a local (in time) solution
u(t, x) exists for 0 < t < T and all x ∈ R

N .
The aim of global analysis is to determine whether T = ∞ may occur.
In the celebrated paper by H. Fujita [2] it was shown that there exists

a critical exponent pf = 1 + 2
N such that for 1 < p < pf and u0 ≥ 0

no global solution of (1.1) exists. Namely, for each u0 ≥ 0 there exists
T∞ = T∞(u0) < ∞ such that for any solution u(t, x) to (1.1) one has∫ |u|p(t, x) dx → +∞, as t → T∞.

Example 1.2. Now consider the following hyperbolic equation⎧⎨
⎩

utt = ∆u + |u|p in R
+ × R

N (p > 1),
u|t=0 = u0(x),
ut|t=0 = u1(x) ≥ 0 (u1(x) �≡ 0).

(1.2)

Here local analysis shows that for each p > 1, u0 and u1 one can find
T = T (u0, u1) such that there exists a local (in time) solution to (1.2)
u(t, x) for 0 < t < T and x ∈ R

N .
Global analysis of (1.2) was carried out by T. Kato in [9]. He obtained

a critical exponent pk = N+1
N−1 such that for 1 < p ≤ pk there is no global

in t (i.e., for all t > 0) solution to (1.2), that is, for each u0, u1 there exists
T∞ = T∞(u0, u1) < ∞ such that

∫ |u|p(t, x) dx → +∞, as t → T∞.
All the above results were obtained by comparison techniques which

are based on the following:

1. comparison (maximum) principle, positivity of the fundamental solu-
tion of the corresponding linear operator;

2. self-similar analysis of solutions.
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This method actually reduces the class of nonlinear equations which can
be handled, to scalar second-order ones. However, by this approach a wide
class of quasilinear partial differential equations has been investigated, see
for instance [3], [4], [5], [11], [12], [1], and [31].

On the other hand, it is clear that this classical approach fails in general
in the case of higher-order equations.

In the joint work [15] with E. Mitidieri, we suggested a new approach
towards blow-up problems which relies on the notion of Nonlinear Capacity.

2. The nonlinear capacity method: a general scheme

It turns out that the blow-up of solutions is connected with the “nonlinear
capacity” induced by nonlinear operators. Before stating rigorous defini-
tions, which will be given in the next section, let us first give a flavor of the
key ingredients involved by considering some model examples in which one
can see how the nonlinear capacity “appears” and “works”.

Example 2.1. Consider as a pilot example the following,{ −∆u ≥ uq in R
N ,

u ≥ 0, q > 1.

related to the nonlinear operator A(u) := −∆u − uq. By solution to this
problem we mean a function u ∈ Lq

loc(R
N ), such that∫

uqψ ≤ −
∫

u∆ψ for all ψ ∈ C2
0 (RN ), ψ ≥ 0.

Let e = eR = {x ∈ R
N : |x| ≤ R}, ψ ∈ C2

0 (RN ), ψ ≥ 0 and

ψ(x) =
{

1, |x| ≤ R,
0, |x| ≥ κR (κ > 1).

We have∫
uqψ ≤ −

∫
∆u · ψ = −

∫
u∆ψ ≤

(∫
uqψ

)1/q
(∫ |∆ψ|q′

ψq′−1

)1/q′

and thus ∫
|x|≤R

uq ≤
∫

uqψ ≤
∫ |∆ψ|q′

ψq′−1 . (2.1)
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We define the nonlinear capacity as

Cap(A, eR) := inf
ψ

∫ |∆ψ|q′
ψq′−1

and hence by replacing the right-hand side in (2.1) with Cap(A, eR) one
sees how the nonlinear capacity appears as the optimal a priori estimate
within a certain class of test functions.

Next we show how the nonlinear capacity “works”.
Clearly, if Cap(A, eR) → 0, as R → ∞, there is no nontrivial (entire)

solution to our problem. We have

Cap(A, eR) ≤
∫ |∆ψ|q′

ψq′−1

and after scaling ψ(x) = ψ0

( |x|
R

)
, ψ0 ≥ 0, ψ0 ∈ C2,

with ψ0(ρ) =
{

1, ρ ≤ 1,
0, ρ ≥ κ > 1,

we get ∫ |∆ψ|q′
ψq′−1 = RN−2q′

∫ |∆ψ0|q′

ψq′−1
0

.

Hence if 1 < q < qcr =
{

N
N−2 for N > 2,
+∞ for N = 1, 2,

then

Cap(A, eR) → 0, as R → ∞ and in turn
∫

RN

uq = 0, u ≥ 0

which yields u = 0 a.e. in R
N .

In the limit case N = 2q′ we have Cap(A, eR) ≤ c∗ < ∞ for all R > 1,

which implies that
∫

RN

uq < ∞ and then

∫
|x|≤R

uq ≤
∫

uqψ ≤ −
∫

u∆ψ = −
∫

supp∆ψ

u∆ψ

≤
( ∫

supp∆ψ

uqψ
)1/q( ∫ |∆ψ|q′

ψq′−1

)1/q′

≤ c
1/q′
∗ ·

( ∫
R≤|x|≤κR

uqψ
)1/q

→ 0 as R → ∞.
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It is known (see for instance [15]) that the critical exponent qcr is sharp.
Indeed, this follows from the following counterexample: if N > 2, for each

q > qcr a function u(x) = A(1 + |x|2)λ > 0 with
2 − N

2
< λ < − 1

q − 1
and

A = 2|λ| · (N − 2 + 2λ) > 0 is a solution of the inequality −∆u ≥ uq in the
whole space R

N .

Example 2.2. In a similar way one can manage the non-homogeneous ver-
sion of the Fujita problem:{

ut = ∆u + |u|p + f(t, x) in R
+ × R

N

u|t=0 = u0(x).

Clearly the critical exponent depends now on f and u0, that is, pcr =
pcr(N, f, u0).

Let

∫
|x|≤R

T∫
0

f(t, x) dt dx
∣∣∣
T=R2

+
∫

|x|≤R

u0(x) dx ≥ cd(1 + Rγ)

with γ ≥ 0 and cd > 0 (without the assumptions f ≥ 0, u0 ≥ 0 !). Then

pcr =
{

+∞, if γ ≥ N,
1 + 2

N−γ , if 0 ≤ γ < N.

Moreover, one obtains the following estimate for the domain of existence of
the solution:

T∞ < T∗ = (c∗/cd)θ, θ =
2(p − 1)

(γ − N)p + N + 2 − γ
for 1 < p < pcr,

R∞ < R∗ = T
1/2
∗ ,

where the exponent θ turns out to be sharp.
The main advantage of this approach consists in the homotopic stability

of critical exponents. Indeed, let A0(u) be a nonlinear operator with critical
exponent q0 and let A1(u) be another nonlinear operator. Moreover, let
A(t, u) be a one parameter family of nonlinear operators, t ∈ [0, 1] and
such that A(0, u) = A0(u) and A(1, u) = A1(u). Let also the coefficients
in A(t, u) be not degenerate, i.e., uniformly bounded away from zero and
infinity (in the suitable norm) for any t ∈ [0, 1] and for any admissible u.
Then the critical exponent q1 of A1 coincides with q0.

As a concrete example consider the following:
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Example 2.3. Let q > 1 and A be the operator defined by

A(u) : = −∆u − uq, u ≥ 0, in R
N .

As we have shown, the corresponding critical exponent is

qcr(A) =
{

N
N−2 for N > 2,
+∞ for N ≤ 2.

Now let

Ã(u) = −div(a(x, u,Du) · Du) − b(x, u,Du), u ≥ 0

with Carathéodory functions a, b such that{
0 < a0 ≤ a(x, u,Du) ≤ a1,
b(x, u,Du) ≥ b0|u|q, b0 > 0.

(H)

Then one has qcr(Ã) = qcr(A).
In particular, under the above assumptions, for the operator Ã1 :

Ã1(u) = −div

(
a(x, u,Du)

Du√
1 + |Du|2

)
− b(x, u,Du)

we have
qcr(Ã1) = qcr(Ã) = qcr(A)

and clearly the same holds for

A1(u) = −div
Du√

1 + |Du|2 − uq, u ≥ 0.

We conclude this section by resuming a general scheme:

nonlinear operator ⇒ nonlinear capacity

⇒ capacity dimension ⇒ blow − up conditions

The main advantages of the method are:
• generality and flexibility,
• simplicity,
• sharpness (non-improvability) of the obtained criteria,
• homotopic stability of critical exponents with respect to nonlinear per-

turbations.
Clearly, the optimality of the obtained results is related to the framework
under considerations; for instance, it is well known from Example 2.1 that
the derived critical exponent is sharp as far as we are concerned with the
inequality in the whole space.
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3. The notion of Nonlinear Capacity

Next we recall from [24] the definition of nonlinear capacity induced by
nonlinear operators.

Let Xloc(Ω) ⊂ L1,loc(Ω) be a function space (Ω ⊂ R
N is a domain),

and let A be an operator A : Xloc(Ω) → D′(Ω), where D′(Ω) denotes the
space of distributions. Let e ⊂ Ω be compact and

C∞
0 (e,Ω) := {ψ ∈ C∞

0 (Ω) | 0 ≤ ψ ≤ 1 in Ω and ψ = 1 in e}.
Let us introduce the following quantity:

CapA(e,Ω) = inf
ψ

sup
u
{(A(u), ψ)

∣∣ u ∈ Xloc(Ω), ψ ∈ C∞
0 (e,Ω)} (3.1)

where (·, ·) denotes a “scalar product”.

Definition 3.1. We call the quantity CapA(e,Ω) defined by (3.1) nonlinear
capacity.

Remark 3.2. In the case A is a coercive operator, we also require in the
above definition:

‖ψ‖X ≤ ‖u‖X .

Example 3.3. Let A(u) = −∆u and Xloc(Ω) = W 1,2
loc (Ω). In this case

CapA(e,Ω) = inf
ψ

sup
u

⎛
⎝−

∫
Ω

∆u · ψ dx

⎞
⎠

where u ∈ W 1,2
loc (Ω), ‖u‖1,2 ≤ ‖ψ‖1,2, ψ ∈ C∞

0 (e,Ω)

= inf
ψ∈C∞

0 (e,Ω)

∫
Ω

|∇ψ|2 dx.

Thus Cap∆(e,Ω) turns out to be the classical (harmonic) capacity.

Example 3.4. Let A(u) = −∆pu, where ∆pu := div(|Du|p−2Du) with p > 1,
and Xloc(Ω) = W 1,p

loc (Ω). Then

CapA(e,Ω)= inf
ψ

⎧⎨
⎩
∫
Ω

|∇ψ|p dx, ψ ∈ C∞
0 (e,Ω)

⎫⎬
⎭ .

Then Cap∆p
(e,Ω) is the so-called p–harmonic capacity; see for instance

[14].
In order to cover a wide class of nonlinear operators, we next generalize

the above definition.
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It is well-known (see for instance [13]) that the general theory for
nonlinear equations is based on a priori estimates for solutions. A priori
estimates, in turn, are mainly derived by using special multipliers. In this
respect, we introduce the following definition for pair (A,M) consisting of
an operator A and a multiplier M :

Definition 3.5. Let AM be determined by

AM = MA

such that MA : Xloc(Ω) → D′(Ω). Then

CapAM
(e,Ω): = CapMA(e,Ω)

= inf
ψ

sup
u

∫
Ω

MA(u)ψ dx, u ∈ Xloc(Ω)ψ ∈ C∞
0 (e,Ω).

(3.2)

Example 3.6. (Nonlinear elliptic capacity)
Let A(u) : = −∆pu − uq, p > 1, q > p − 1 and

Xloc(Ω) =

⎧⎨
⎩u ∈ W 1,p

loc (Ω)
∣∣ u ≥ 0,

∫
loc

|Du|puα +
∫
loc

uq+α < ∞
⎫⎬
⎭ .

Take M(u) = uα with 1 − p < α < 0. Then

CapAM
(e,Ω) = inf

ψ∈C∞
0 (e,Ω)

⎧⎨
⎩1

c

∫
Ω

|Dψ|γ
ψγ−1 dx

⎫⎬
⎭

with some c > 0, where γ =
p(q + α)
q − p + 1

.

Remark 3.7. If we take ψ = ζγ , then

CapAM
(e,Ω) = inf

ψ∈C∞
0 (e,Ω)

⎧⎨
⎩γγ

c

∫
Ω

|Dζ|γdx

⎫⎬
⎭ .

From here it follows (see [15]) that

qcr =

⎧⎨
⎩

N(p − 1)
N − p

if N > p,

+∞ if p ≥ N.

In particular, for p = 2 we get the exponent qcr =
N

N − 2
(N > 2).
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Example 3.8. (Nonlinear parabolic capacity)
Let

A(u) : =
∂u

∂t
− D(uσ|Du|p−2Du) − uq, u ≥ 0 in R

N+1
+ ,

where we set R
N+1
+ := R

+ × R
N and where p > 1,

p

N
+ σ + p − 1 > 1,

q > max{1, σ + p − 1}. Then

CapAM
(e,Q)

= inf
ψ

⎧⎪⎨
⎪⎩
∫∫
Q

|Dψ|γ1

ψγ1−1 +
∫∫
Q

|ψt|γ2

ψγ2−1 : ψ = ψ(t, x), ψ ∈ C∞
0 (e,Q), Q ⊂ R

N+1
+

⎫⎪⎬
⎪⎭

with

γ1 =
p(q + α)

q − (σ + p − 1)
, γ2 =

q + α

q − 1
(−1 < α ≤ 0).

From here we get (see [15])

qcr =
p

N
+ σ + p − 1.

This critical exponent was previously obtained by V.A. Galaktionov (see
[3], [4]).

Related to the homotopic stability of the critical exponent, we have
the following: let Ã be a parabolic operator with variable coefficients

Ã(u) : =
∂u

∂t
− div(a(. . . )uσ |Du|p−2Du) − b(. . . ), u ≥ 0 in R

N+1
+

with
a(. . . ) = a(t, x, u,Du, . . . ),
b(. . . ) = b(t, x, u,Du, . . . )

under the assumptions:{
0 < a0 ≤ a(. . . ) ≤ a1,
b(x, u,Du) ≥ b0|u|q, b0 > 0.

Of course, we assume that these nonlinear coefficients are Carathéodory
functions for which the operator Ã turns out to be well defined in the
related function space. Then we have

qcr(Ã) = qcr(A) =
p

N
+ σ + p − 1.

This technique extends to higher-order equations as we show in the
next
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Example 3.9. (The generalized Zeldovich-Kompaneets-Barenblatt equation)
This equation is determined by the operator A0,

A0(u) : = ut + (−∆)k|u|m − |u|p in R
N+1
+

with p > m ≥ 1. Then we have

CapA0
(e,Ω) = inf

ψ∈C∞
0 (e,Ω)

⎧⎨
⎩
∫∫
Ω

|Dkψ|q′
ψq′−1 +

|ψt|p′
ψp′−1

⎫⎬
⎭

with q =
p

m
, q′ =

q

q − 1
, p′ =

p

p − 1
and the critical exponent is given by

pcr(A0) = m +
2k
N

.

Let us determine the dependence of the critical exponent of this operator
on the data of the Cauchy problem. To this end, we consider the following
inequality: {

A0(u) ≥ f(t, x) in R
N+1
+ ,

u|t=0 = u0(x) in R
N

with

T∫
0

∫
BR

f(t, x) dt dx
∣∣∣
T=Rθ

+
∫

BR

u0(x) dx ≥ cd(1 + Rγ), θ = 2k
p − 1
p − m

and

cd > 0.
Then the critical exponent pcr of this problem is equal to

pcr =
{

m + 2k
p−γ for 0 ≤ γ < N,

+∞ for γ ≥ N.

Note that the critical exponent is homotopically stable in this case as well.
Indeed, consider

Ã(u) = ut + (−∆)kf(t, x, u) − b(t, x, u),

with Carathéodory functions f and b satisfying the inequalities

|f(t, x, u)| ≤ c|u|m,

b(t, x, u) ≥ b0|u|p

with p > m > 1, b0 > 0. Then we have

pcr(Ã) = pcr(A0).
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Example 3.10. (Nonlinear hyperbolic capacity)

Let

A(u) : =
∂2u

∂t2
−

∑
l≤|α|≤L

DαAα(t, x, u) − b(t, x, u)|u|q in R
N+1
+

with Carathéodory functions Aα and b such that

|Aα(t, x, u)| ≤ c|u|p, p > 0,

b(t, x, u) ≥ b0 > 0

with q > max{1, σ + p − 1}. Then we have

CapA(e,Ω) ≤ C inf
∫∫
Ω

|Dψ|γ1

ψγ1−1 +
∫∫
Ω

|ψtt|γ2

ψγ2−1

where the infimum is taken over the functions ψ = ψ(t, x), ψ ∈ C∞
0 (e,Ω),

Ω ⊂ R
N+1
+ and where

γ1 =
q

q − p
, γ2 =

q

q − 1
,

from which we get (see [15])

qcr =

⎧⎨
⎩

2N + l

2N − l
for 2N − l > 0,

+∞ for 2N − l ≤ 0.

Remark 3.11. For A(u) : =
∂2u

∂t2
− ∆u − |u|q in R

N+1
+ we have p = 1, l = 2

and thus

qcr|p=1,l=2 =
2N · 1 + 2
2N · 1 − 2

=
N + 1
N − 1

(N > 1),

that is the Kato exponent [9].

Further details, developments and applications of the nonlinear capac-
ity method can be found in [15], [16], [25].

4. Nonlocal nonlinearities

The technique we have explained so far can be used also to deal with
nonlinear integral equations and inequalities. In this context, we recall from
[17] some Liouville type theorems which can be obtained by this method.
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Example 4.1. Consider the equation

u(x) =
∫

RN

1
|x − y|N−β

|u(y)|qdy. (4.1)

For 0 < β < N which is the integral version of −∆βu = |u|q in R
N . Then

we have qcr =
N

N − β
.

Theorem 4.2. Let 1 < q ≤ qcr. Then (4.1) has no nontrivial solutions.

Example 4.3. Consider a more general case

L(u) ≥
∫

RN

1
|x − y|N−β

|u(y)|qdy (4.2)

with β < N , where L is a linear differential operator.

Theorem 4.4. There exists qcr > 1 such that for 1 < q ≤ qcr equation (4.2)
has no nontrivial solution.

Example 4.5. For the parabolic nonlocal inequality

ut − ∆u ≥
∫

RN

1
|x − y|N−β

|u(y)|qdy,

we have
qcr =

N + 2
N − β

(0 < β < N).

Example 4.6. For the hyperbolic nonlocal inequality

utt − ∆u ≥
∫

RN

1
|x − y|N−β

|u(y)|qdy,

we obtain

qcr =

⎧⎨
⎩

N + 1
N − 1 − β

for 0 < β < N − 1,

+∞ for N − 1 ≤ β < N.

Example 4.7. We now consider the following higher-order Cauchy problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ku

∂tk
−

∑
l≤|α|≤m

Dαaα(t, x, u) ≥
∫

RN

|x − y|β−N |u(t, y)|q dy + f(t, x),

∂iu

∂ti

∣∣∣
t=0

= ui(x), i = 0, . . . , k − 1.

(4.3)
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Theorem 4.8. Let k ≥ 1, l ≥ 1, N > β > 0 and functions ui ∈ L1
loc(R

N )
and f ∈ L1

loc(R+ × R
N ) be such that

lim inf
R→∞

∫
BR

uk−1(x) dx ≥ 0, lim inf
R,T→∞

T∫
0

∫
BR

f(t, x) dx dt ≥ 0.

Let aα satisfy the estimate |aα(t, x, u)| ≤ cα|u|p with some cα > 0, p > 0
and with q > max{1, p}. Then problem (4.3) has no nontrivial solution for

q ≤ qcr =

⎧⎨
⎩

(kN − β)p + l + β

(N − β − l)k + l
if (N − β − l)k + l > 0,

+∞ if (N − β − l)k + l ≤ 0.

Corollary 4.9. Consider the generalized John problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂2u

∂t2
− ∆u ≥

∫
RN

|x − y|β−N |u(t, y)|q dy + f(t, x) in R
N+1
+ ,

u|t=0 = u0(x) in R
N ,

∂u

∂t

∣∣
t=0 = u1(x) in R

N ,

(4.4)

where q > 1 and N > β > 0. Consider functions u0, u1 ∈ L1
loc(R

N ),
f ∈ L1

loc(R+ × R
N ),

lim inf
R→∞

∫
BR

u1(x) dx ≥ 0, lim inf
R,T→∞

T∫
0

∫
BR

f(t, x) dx dt ≥ 0.

Then problem (4.4) has no nontrivial solution for

q ≤ qcr =

⎧⎨
⎩

N + 1
N − 1 − β

if 0 < β < N − 1,

+∞ if N − 1 ≤ β < N.

The proof of the above statements is based on the nonlocal (integral)
capacity generated by the corresponding nonlocal (integral) operator; see
[17].

5. The Kuramoto-Sivashinsky Equation

Let us consider the following equation:

ut + ∆2u + ∆u = |Du|2, in R
N
+ (5.1)
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which was introduced by Y. Kuramoto [10] to describe dissipative structures
in connection with diffusion and independently by G. Sivashinsky [30] in
the context of hydrodynamical instability in combustion theory; later on,
other physical applications were discovered. So far an extensive literature
has been devoted to this equation, though the available results mainly deal
with the one-dimensional case; here we present some results in the multi-
dimensional case.

Let Ω0 be a bounded domain in R
N with smooth boundary ∂Ω0 and

0 ∈ Ω0, Ω = R
N \ Ω0 and let QT = (0, T ) × Ω and ΓT = (0, T ) × ∂Ω0.

Consider the problem

ut + ∆2u + ∆u = |Du|2 in QT (5.2)

with boundary conditions

u =
∂

∂n
(u + ∆u) = 0 on ΓT (5.3)

and initial datum
u|t=0 = u0(x) in Ω. (5.4)

The problem is considered in the space W 1,4
2, loc(QT ).

By using the approach based on the nonlinear capacity method we
obtain the following blow-up result; see [28], [7] and [29].

Theorem 5.1. Let

lim
R→∞

IR(u0)

R
3N−2

2

= +∞ for N > 2,

lim
R→∞

IR(u0)
R2 ln R

= +∞ for N = 2,

lim
R→∞

IR(u0)
R

= +∞ for N = 1,

where IR(u0) :=
∫

ΩR

u0(x) dx and ΩR := {x ∈ R
N | |x| ≤ R}. Then problem

(5.2)–(5.4) has no global solution for all t > 0. Moreover, there is no solu-
tion u(t, x) for x ∈ ΩR with R > R∗ and t > TR∗ , where R∗ and TR∗ are
determined by the initial data of the problem.

Remark 5.2. It should be noted that the asymptotic exponent of the be-

havior of the initial data u0, namely
3N − 2

2
for N > 2, is sharp (non-

improvable). This follows from a counterexample which shows the existence
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of a global solution to the problem when

|u0(x)| ≤ C|x|N−2
2 (N > 2, R > 1),

which implies ∣∣∣∣∣∣∣
∫

ΩR

u0(x) dx

∣∣∣∣∣∣∣ ≤ CR
3N−2

2 for N > 2, R > 1.

6. Schemes for applying nonlinear capacity

I. The explicit scheme.

Consider the inequality A(u) ≥ f(u) ≥ 0 in Xloc(RN ), where the function
f is such that f(u) = 0 implies u = 0 a.e. in R

N .
Fix BR ⊂ R

N and ψ ≥ 0, ψ ∈ C∞
0 (RN ), ψ(x) = 1 for x ∈ BR. Then

we have ∫
BR

f(u) ≤
∫

f(u)ψ ≤
∫

A(u)ψ ≤ CapA(BR, RN )

by the very definition.
Hence, if CapA(BR, RN ) → 0 as R → ∞, we get u = 0 a.e. in R

N .
The “size” of the possible existence domain can be also estimated

according to the following scheme.
Let A(u) ≥ h ≥ 0 in Xloc(RN ). Then we have∫

hψ ≤
∫

A(u)ψ ≤ CapA(BR, RN ) for R ≥ 1.

If
∫

BR

h ≥ c1 · Rκ for R ≥ 1 and CapA(BR, RN ) ≤ c2 · Rθ for R ≥ 1, we get

c1R
κ ≤ c2R

θ, κ > θ.

Thus the radius of the existence domain can be estimated by

R∗ = max
{

1, (c2/c1)1/(κ−θ)
}

.

II. The implicit scheme.

Consider a non-negative functional of the form∫
RN

E(u) dx, u ∈ X+
loc(R

N )
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such that E(u) ≥ 0 and
∫
Ω

E(u) dx = 0 implies u = 0 a.e. in Ω.

If for any solution u ∈ X+
loc(R

N ) of the inequality A(u) ≥ 0 there holds∫
Ω

E(u)ψ ≤ c0CapA(eR, RN ).

Then one has u = 0 a.e. in R
N , provided CapA(eR, RN ) → 0, as R → ∞.

7. Some generalizations: the k-th order entropy and
related applications

The above applications of the nonlinear capacity method rely on the posi-
tivity of the right-hand side of the nonlinear equation. Otherwise, we cannot
apply this approach directly. For instance, we cannot apply this approach
directly to conservation laws. In order to overcome this difficulty and ex-
tending the setting in which this approach can be exploited, we introduce
the notion of k-th order entropy.

Suppose that for a given non-stationary problem in R
N+1
+ there holds

an inequality of the form

∂H0

∂t
−

N∑
i=1

∂Hi

∂xi
≥ W in R

N+1
+ (7.1)

Here H0,H1, . . . ,HN and W are functions depending on t, x, the solution
u of the problem and its derivatives of order k ≥ 0 that belong to the class
C1 in the range of the corresponding variables.

Let these functions satisfy the inequality

W ≥ c0(|H0|q +
N∑

i=1

|Hi|qi) (7.2)

for some constants c0 > 0, q, q1, . . . , qN > 1 in the whole range of the
arguments under consideration.

Definition 7.1. A pair of functions (H0,H), where H0 is a C1 scalar function
and H = (H1, . . . ,HN ) is a C1 vector valued function satisfying inequalities
(7.1)–(7.2) on the solutions of the problem, is called the k-th order entropy
for the original non-stationary problem.
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We remark that the class of solutions turns out to be determined by
the conditions {

H0, Hi, W ∈ L1
loc(R

N+1
+ ),

H0|t=0 ∈ L1
loc(R

N ).
(7.3)

Definition 7.2. A generalized solution of the non-stationary problem sat-
isfying conditions (7.3) is called a k-entropy one, if for this solution there
exists the k-th order entropy satisfying inequality (7.1) in the sense of dis-
tributions D′

+(RN+1
+ ).

A key feature in this context being the following quantity,

θ =
N∑

i=1

q′

q′i
+ 1 − q′ with q′ =

q

q − 1
and q′i =

qi

qi − 1
(i = 1, . . . , N), (7.4)

which arises in applications to the existence of global solutions to non-
stationary problems.

Theorem 7.3. Let the non-stationary problem under consideration have the
k-th order entropy with θ ≤ 0. Then this non-stationary problem does not
admit a nontrivial global k-entropy solution in the whole R

N+1
+ if the initial

conditions are such that
H0|u(0,x) ≥ 0. (7.5)

The proof of this theorem and applications to conservation laws can
be found in [26].

Example 7.4. (The Hamilton–Jacobi equation). Following [27], we present
as an application of the previous theorem, the Hamilton–Jacobi equation
with a non-negative Hamiltonian:⎧⎨

⎩
∂u

∂t
= H(u,Du), (x, t) ∈ R

2
+,

u(0, x) = u0(x) ≥ 1, x ∈ R.
(7.6)

Let us define for this problem the 1st order entropy as the vector valued
function (H0,H1) with H0 = H0(u, p), H1 = H1(u, p) satisfying (7.1)–(7.2)
on smooth solutions of the equation (7.6).

Then validity of inequality (7.1) for all values of the corresponding
arguments implies by (7.2)

∂H1

∂p
=

∂H

∂p
· ∂H0

∂p
. (7.7)

By choosing, for instance,

H0(u, p) = ua|p|b, u ≥ 1, p ∈ R,
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we get
∂H1

∂p
= bua|p|b−2p

∂H

∂p
.

Hence for

W (u, p) :=
∂H0

∂t
− ∂H1

∂x
with

∂u

∂t
= H(u, p), p =

∂u

∂x
we find

W (u, p) = a(1 − b)ua−1|p|bH(u, p)

+ b(b − 1)ua−1p

∫
(aH(u, s) + uHu(u, s))|s|b−2ds.

As a consequence of Theorem 7.3. we have the following

Corollary 7.5. Let a non-negative C1 Hamiltonian H be such that there exist
parameters a and b ∈ R and functions H0, H1, W as above for which there
holds

W ≥ c0(|H0|q + |H1|q1)

for all u ≥ 1 and p ∈ R with some c0 > 0, q > 1 and q1 > 1 such that

θ =
q′

q′1
+ 1 − q′ ≤ 0.

Then there is no nontrivial global solution of the Cauchy problem (7.6) with
C1-initial condition u0(x) ≥ 1.

Example 7.6. Consider the Cauchy problem⎧⎨
⎩

∂u

∂t
= uµ|Du|λ, (t, x) ∈ R

2
+,

u(0, x) = u0(x) ≥ 1, x ∈ R

(7.8)

with u0 ∈ C1(R). We restrict ourselves to the case λ > 1, λ + µ > 1. Then
for parameters a and b such that b > 1 and a + b + λ + µ − 1 ≤ 0 all the
assumptions of Corollary 7.5. are fulfilled with

q =
b + λ

b
, q1 =

b + λ

b + λ − 1
and θ =

1 − b

λ
< 0.

Hence there is no nontrivial entropy solution of the Cauchy problem (7.8)
for all t > 0. In particular, this problem has no nontrivial (i.e. u �≡const)
C2

x solution for all t > 0.
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Remark 7.7. It is worth to notice that the solutions under consideration, in
general do not belong to the class of viscosity solutions.

8. Further applications

A mathematical model for a roof crash. Let us assume that a roof can be
modeled in terms of a nonlinear membrane:

∂2u

∂t2
− div

Du√
1 + |Du|2 = −k|u|q−1u + h(x) in R

N+1
+ ,

where:

• u is a displacement of the roof from equilibrium,
• k > 0 is the rigidity coefficient,
• −k|u|q−1u is the restoring nonlinear force with q > 1,
• h(x) is the external load.

Then the steady state of the roof u ≤ 0 (the u–axis is directed downwards)
is governed by the equation

−div
Du√

1 + |Du|2 = k|u|q + h(x), h(x) ≡ H0 in R
N .

By means of the approach discussed so far, for h(x) ≡ H0 > 0 there exists
R∞ such that there is no solution in the ball BR with R ≥ R∞.

For R∞ one also has the following bound

R∞ ≤ R∗ =
(

c∗
H0

) 1
2q′

,

where q′ =
q

q − 1
, c∗ = c∗(N, k).

Nonlinear capacity and existence. Actually the notion of nonlinear capacity
can be somehow exploited also for existence problems, as we are going to
show in the next example.

Example 8.1. Consider as a reference model the following Cauchy problem⎧⎨
⎩

du

dt
= u2,

u|t=0 = u0.

(8.1)
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The explicit solution of this problem has the form u(t) =
u0

1 − u0t
. Hence

for u0 < 0 there exists a global solution, and for u0 > 0, there is a blow-up

solution with T∞ =
1
u0

.

Now we apply the nonlinear capacity approach to this problem. We
have

T∫
0

u2ϕ = uϕ
∣∣∣T
0
−

T∫
0

uϕ′,

where
ϕ(t) ≥ 0, ϕ ∈ C1

0 (R),

ϕ(T ) = 0, ϕ(0) = 1.

This yields

T∫
0

u2ϕ ≤ −u0 +

⎛
⎝ T∫

0

u2ϕ

⎞
⎠

1/2⎛
⎝ T∫

0

ϕ′2

ϕ

⎞
⎠

1/2

. (8.2)

Due to scaling
ϕ(t) = ϕ0(τ), τ = t/T,

ϕ0 ∈ S := {ϕ0 ≥ 0, ϕ0(0) = 1, ϕ0(1) = 0, ϕ0 ∈ C1
0 (R)} (S)

we obtain
T∫

0

ϕ′2

ϕ
dt =

1
T

1∫
0

ϕ′
0
2

ϕ0
dτ.

This equality and (8.2) give

T∫
0

u2ϕ ≤ −u0 +
C

1/2
ϕ0√
T

⎛
⎝ T∫

0

u2ϕ

⎞
⎠

1/2

(8.3)

with

Cϕ0 =

1∫
0

ϕ′
0
2

ϕ0
dτ.

Consider

min

⎧⎨
⎩

1∫
0

ϕ′
0
2

ϕ0
dτ : ϕ0 ∈ S

⎫⎬
⎭ .
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After a change of variables

ϕ0(τ) → ψ0(τ) : ϕ0 = ψ2
0

we get
1∫

0

ϕ′
0
2

ϕ0
dτ = 4

1∫
0

ψ′
0
2
dτ.

Then

min

⎧⎨
⎩

1∫
0

ψ′
0
2
dτ : ψ0 ∈ S

⎫⎬
⎭ = 1.

Thus Cϕ0 = 4 and (8.3) leads to

T∫
0

u2ϕ ≤ −u0 +
2√
T

⎛
⎝ T∫

0

u2ϕ

⎞
⎠

1/2

⇒

⎡
⎢⎣
⎛
⎝ T∫

0

u2ϕ

⎞
⎠

1/2

− 1√
T

⎤
⎥⎦

2

≤ −u0 +
1
T

.

Consequently:
• If u0 < 0, then −u0 + 1/T > 0, hence due to the a priori estimate for

ODE there exists a solution for any T > 0.
• If u0 > 0 and T < 1/u0, then −u0 + 1/T > 0, and there exists a

solution for T < 1/u0.
• If u0 > 0 and T ≥ 1/u0, we have −u0 + 1/T ≤ 0 and there is no

solution for T ≥ 1/u0.
Thus the blow-up time

T∞ = 1/u0

is the same as the one obtained before from the explicit form of the solution!
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